Development of a Synthetic Malonyl-CoA Sensor in Saccharomyces cerevisiae for Intracellular Metabolite Monitoring and Genetic Screening.
نویسندگان
چکیده
Genetic sensors capable of converting key metabolite levels to fluorescence signals enable the monitoring of intracellular compound concentrations in living cells, and emerge as an efficient tool in high-throughput genetic screening. However, the development of genetic sensors in yeasts lags far behind their development in bacteria. Here we report the design of a malonyl-CoA sensor in Saccharomyces cerevisiae using an adapted bacterial transcription factor FapR and its corresponding operator fapO to gauge intracellular malonyl-CoA levels. By combining this sensor with a genome-wide overexpression library, we identified two novel gene targets that improved intracellular malonyl-CoA concentration. We further utilized the resulting recombinant yeast strain to produce a valuable compound, 3-hydroxypropionic acid, from malonyl-CoA and enhanced its titer by 120%. Such a genetic sensor provides a powerful approach for genome-wide screening and could further improve the synthesis of a large range of chemicals derived from malonyl-CoA in yeast.
منابع مشابه
Screening Phosphorylation Site Mutations in Yeast Acetyl-CoA Carboxylase Using Malonyl-CoA Sensor to Improve Malonyl-CoA-Derived Product
Malonyl-coenzyme A (malonyl-CoA) is a critical precursor for the biosynthesis of a variety of biochemicals. It is synthesized by the catalysis of acetyl-CoA carboxylase (Acc1p), which was demonstrated to be deactivated by the phosphorylation of Snf1 protein kinase in yeast. In this study, we designed a synthetic malonyl-CoA biosensor and used it to screen phosphorylation site mutations of Acc1p...
متن کاملCisplatin cytotoxicity is dependent on mitochondrial respiration in Saccharomyces cerevisiae
Objective(s): To understand the role of mitochondrial respiration in cisplatin sensitivity, we have employed wild-type and mitochondrial DNA depleted Rho0 yeast cells. Materials and Methods: Wild type and Rho0 yeast cultured in fermentable and non-fermentable sugar containing media, were studied for their sensitivity against cisplatin by monitoring growth curves, oxygen consumption, pH changes ...
متن کاملA Sense of Balance: Experimental Investigation and Modeling of a Malonyl-CoA Sensor in Escherichia coli
Production of value-added chemicals in microorganisms is regarded as a viable alternative to chemical synthesis. In the past decade, several engineered pathways producing such chemicals, including plant secondary metabolites in microorganisms have been reported; upscaling their production yields, however, was often challenging. Here, we analyze a modular device designed for sensing malonyl-CoA,...
متن کاملImproving Production of Malonyl Coenzyme A-Derived Metabolites by Abolishing Snf1-Dependent Regulation of Acc1
ABSTRACT Acetyl coenzyme A (acetyl-CoA) carboxylase (ACCase) plays a central role in carbon metabolism and has been the site of action for the development of therapeutics or herbicides, as its product, malonyl-CoA, is a precursor for production of fatty acids and other compounds. Control of Acc1 activity in the yeast Saccharomyces cerevisiae occurs mainly at two levels, i.e., regulation of tran...
متن کاملNegative feedback regulation of fatty acid production based on a malonyl-CoA sensor-actuator.
Engineering metabolic biosynthetic pathways has enabled the microbial production of many useful chemicals. However, pathway productivities and yields are often limited by metabolic imbalances. Synthetic regulatory circuits have been shown to be able to balance engineered pathways, improving titers and productivities. Here we developed a negative feedback regulatory circuit based on a malonyl-Co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- ACS synthetic biology
دوره 4 12 شماره
صفحات -
تاریخ انتشار 2015